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About the SMARTER research project 

SMARTER will develop and deploy innovative strategies to improve Resilience and Efficiency 

(R&E) related traits in sheep and goats. SMARTER will find these strategies by: i) generating 

and validating novel R&E related traits at a phenotypic and genetic level ii) improving and 

developing new genome-based solutions and tools relevant for the data structure and size of 

small ruminant populations, iii) establishing new breeding and selection strategies for various 

breeds and environments that consider R&E traits. 

 SMARTER with help from stakeholders chose several key R&E traits including feed efficiency, 

health (resistance to disease, survival) and welfare. Experimental populations will be used to 

identify and dissect new predictors of these R&E traits and the trade-off between animal 

ability to overcome external challenges. SMARTER will estimate the underlying genetic and 

genomic variability governing these R&E related traits. This variability will be related to 

performance in different environments including genotype-by-environment interactions 

(conventional, agro-ecological and organic systems) in commercial populations. The outcome 

will be accurate genomic predictions for R&E traits in different environments across different 

breeds and populations. SMARTER will also create a new cooperative European and 

international initiative that will use genomic selection across countries. This initiative will 

make selection for R&E traits faster and more efficient. SMARTER will also characterize the 

phenotype and genome of traditional and underutilized breeds. Finally, SMARTER will propose 

new breeding strategies that utilise R&E traits and trade-offs and balance economic, social 

and environmental challenges.  

The overall impact of the multi-actor SMARTER project will be ready-to-use effective and 

efficient tools to make small ruminant production resilient through improved profitability and 

efficiency.  
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1 Summary 

Evaluating bias and accuracy in small ruminant genetics is not easy because males have little 

number of phenotyped offspring, because studies are generally small, and often use hghly 

selected (elite) animals. In this document we present some existing methods and we argue 

that they are either difficult to use or incorrect. Here we propose the general use of method 

LR (“Linear Regression”), with small examples, and discuss practicalities. During Smarter, we 

have applied the method to several data sets, gathered experience, and further developed 

some methodological aspects. 

2 Introduction 

In genomic selection, use of early genomic proofs can lead to suboptimal selection decisions 
if there is bias (see below for description of bias). In sheep and goats, and in particular for 
traits expressed in females, there is a lack of good tools to evaluate the presence or absence 
of bias, and the methods to evaluate accuracy of genomic selection are suboptimal. 

We do we concern about bias? Selection theory establishes that selection is optimal if each 
candidate to selection is compared fairly to each other. This means that across individuals, 
Estimated Breeding Values (EBV, 𝑢̂) of the selected candidates is equal to the expectation of 
the (true) Breeding Values (BV, 𝑢). When animals are selected, this is true under two condi-

tions: 𝑢‾ = 𝑢̂‾  and 𝑐𝑜𝑣(𝑢, 𝑢̂) = 𝑣𝑎𝑟(𝑢̂), where the means and the covariances apply across 
the animals selected in an operation (i.e. at the time of selecting young male lambs). The 
property 𝑐𝑜𝑣(𝑢, 𝑢̂) = 𝑣𝑎𝑟(𝑢̂) is needed because if the distribution of 𝑢̂ of e.g. young ani-
mals is too (or not enough) spread, we will select too many (or too little) young animals. 
Note that at this point, these properties are not statistical and therefore are neither “fre-
quentist” nor “Bayesian”.1 

These properties can be formalized as 

(1) equality of estimated and true means : 

𝟏′𝐮̂ = 𝟏′𝐮 

or equivalently 
1

𝑛
∑𝑢̂𝑖 =

1

𝑛
∑𝑢𝑖  or still 𝑢̂‾ = 𝑢‾ , and 

                                                           
 

 

1 The compensation that NZ farmers got in 2010 for using genomic bulls with biased genomic 
proofs did not know about priors or sampling distributions :-)  
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(2) slope of true on estimated equal to 1 

1

𝑛
∑(𝑢̂ − 𝑢̂𝑖)

2
=
1

𝑛
∑[(𝑢𝑖̂ − 𝑢̂‾)(𝑢𝑖 − 𝑢‾)] 

or equivalently 𝑐𝑜𝑣(𝑢, 𝑢̂) = 𝑣𝑎𝑟(𝑢̂). 

Henderson (Henderson (1975), Henderson (1982)) established that the two properties above 
hold, even if there is selection, on expectation for one animal across repeated conceptual 
sampling of its (𝑢, 𝑢̂). Then Legarra and Reverter (2018) proved that the proof applies to sets 
of EBVs from groups of animals, so we have that the two properties hold on expectation for 
many animals across repeated conceptual sampling. By the Law of Large Numbers, when the 
number of animals is large, a number converges to its expectation. This means that, for a 

large number of animals, 𝑢̂‾ = 𝑢‾  must hold empirically. 

So the theory says that, without invoking some esoteric statistical framework, genetic evalu-
ations should be unbiased. But how can we check this? We don’t have 𝑢, only 𝑢̂. In dairy cat-
tle, they compare predictions vs. progeny proofs (or Daughter Yield Deviations) but in other 
species the number of offspring of each animal is small. 

In addition, we’re interested in finding out the accuracy of genomic prediction, i.e. 𝑟(𝑢, 𝑢̂). 
Again, it is difficult to obtain this number in small ruminant cases. 

3 Bias due to using pre-corrected data or De-Regressed Proofs (DRP) 

The following is extracted from Legarra and Reverter (2018). Often we have used precor-
rected phenotypes 𝑦∗ or deregressed proofs, and compare predictions 𝑦̂ with (precorrected) 
observations 𝑦∗ (this method is sometimes called “predictability”). The estimator of accuracy 
is e.g. 𝑟 ≈ 𝑐𝑜𝑟(𝑦∗, 𝑦̂)/ℎ for ℎ2 the heritability (Legarra et al. 2008). But this ignores that pre-
correction generates a covariance structure in 𝑦∗, is very sensitive to low values of ℎ2, and it 
also ignores that animals used in these studies can be preselected (case for instance of elite 
males). This leads to paradoxes: 

• 𝑟 > 1 (observed in chicken) 

• 𝑟𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 > 𝑟𝑔𝑒𝑛𝑜𝑚𝑖𝑐 (observed in dairy cattle for fertility) 

3.1 Bias due to ignoring the effect of selection on genetic variance 

It also ignores that candidates to selection have reduced genetic variance (Bijma (2012)). For 
instance, for prospective AI rams in dairy sheep, because they’re highly selected, their ge-
netic variance is less than the “normal” genetic variance.2 

                                                           
 

 

2 Note that the genetic variance is recovered when this animals mate to females in the next 
generation. 
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Consider for instance that we made a study on growth in meat sheep in selected rams in a 
performance recording station. These rams are selected based on parent average and there-
fore their genetic variance, is, say, 𝑘 = 80% of the populational one, and ℎ2 = 0.3. Through 
cross-validation we obtain 𝑐𝑜𝑟(𝑦∗, 𝑦̂) = 0.4 and we conclude that 𝑟 ≈ 𝑐𝑜𝑟(𝑦∗, 𝑦̂)/ℎ = 0.73. 
However this is incorrect because these animals were selected, so that in these rams, the 

heritability is actually ℎ2∗ =
𝑘ℎ2

1−(1−𝑘)ℎ2
≈ 0.26. Coupling in our equation 𝑟 ≈ 𝑐𝑜𝑟(𝑦∗, 𝑦̂)/ℎ∗ =

0.78, quite higher. 

3.2 Bias due to pre-correction by fixed effects 

There is a second, non-negligible source of bias. We use 𝑦∗ (precorrected data) as it was “ex-
act”. This leads to overestimation of accuracies. In Legarra and Reverter (2018) we worked 
out that for a balanced design with 𝑛𝑖  records per contemporary group, the bias is such that 

the relative overestimation of accuracy is of order 
1

𝑛𝑖
. For instance: 

• Dairy sheep: assume 25 animals / contemporary group. This leads to overestimation of 
accuracy by 1/25 = 4%. If 𝑟 ≈ 𝑐𝑜𝑟(𝑦∗, 𝑦̂)/ℎ = 0.73, this 𝑟 was overestimated by 4% 
so that the actual accuracy should be 𝑟 = 0.73(1 − 0.04) = 0.70. 

• Beef cattle: 5 animals / contemporary group. This leads to overestimation of accuracy 
of 20% 

4 Method LR to the rescue 

For all these reasons we want better methods to assess biases and accuracies. 

Legarra and Reverter (2018), with further proofs by Bermann et al. (2021), extended the ma-
chinery developed by Henderson (1975) and Reverter et al. (1994) to infer biases and accura-
cies by splitting the data set. They defined partial (p) and whole (w) data sets, so the partial 
data set contains all information until a given date and the whole data set contains all infor-
mation available for the analyst until a later date (not necessarily now). The procedure, 
called LR from Linear Regression3 is described next. LR in a nutshell 

You have complete (whole) records, pedigree and (perhaps) markers. Consider a cut-off 
date. Records before these date make the partial data set: 𝐲𝑝 whereas all records make the 

whole data set: 𝐲𝑤. Then you run two genetic evaluation with either the partial data or the 
whole data, and you keep the entire pedigree and markers in both. In these manner, you 
have EBVs for all animals in both cases, 𝑢̂𝑝 and 𝑢̂𝑤 respectively. 

                                                           
 

 

3 The fact that the initials of the authors are LR is, of course, coincidental :-) 
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Then you compare EBVs of animals in partial and whole prediction. You don’t include all ani-
mals; you consider contemporary animals with similar information, in which you have an in-
terest (for instance, males candidates to selection). We call this focal animals or focal 
groups. See below for examples. 

The comparison is very simple and it just consist in a series of statistics that can be easily 
computed. We propose several criteria. This can be found in F. L. Macedo et al. (2020) which 
is the most up-to-date source. Note that in the following, whenever we put something like 
𝑐𝑜𝑣(𝐮̂𝑝, 𝐮̂𝑤) we mean a 𝑠𝑐𝑎𝑙𝑎𝑟 (the “observed” covariance) and not a matrix (which is the 

sampling or prior distribution of the vector). 

4.1.1 Bias 

This is measured using 𝛥̂𝑝 = 𝐮̂‾ 𝑝 − 𝐮̂‾𝑤. The expectation is 0 (no bias). A positive value means 

that animals with partial information are overevaluated. 

4.1.2 Slope 

Also calledr over/underdispersion. This is measured using 𝑏̂𝑝 =
𝑐𝑜𝑣(𝐮̂𝑝,𝐮̂𝑤)

𝑣𝑎𝑟(𝐮̂𝑝)
 or, equivalently, 

computing the slope 𝑏1 of the linear regression “whole on partial” 𝑢̂𝑤 ∼ 𝑏0 + 𝑏1𝑢̂𝑝 + 𝜖. The 

expectation is 1 (no over- neither under-dispersion), values lower than 1 mean that selected 
candidates are overestimated. This is the kind of bias commonly reported in dairy cattle 
studies. 

A very small example with 5 individuals follows: 

# these are actually 5 "proven" bulls  
EBV2018=c(999,849,831,953,764)  
EBV2019=c(973,833,904,963,807)  
Delta_p=mean(EBV2018)-mean(EBV2019) # -16.8  
b_p=cov(EBV2019,EBV2018)/var(EBV2018) #0.71 
aa=lm(EBV2019~EBV2018)  
b_p=aa$coefficients[2] # 0.71 

4.1.3 Accuracies 

There are two estimators of relative accuracies and two estimators of absolute accuracies. 

• The first statistic is the correlation between partial and whole EBVs: 𝜌̂𝑤𝑝 =
𝑐𝑜𝑣(𝐮̂𝑝,𝐮̂𝑤)

√𝑣𝑎𝑟(𝐮̂𝑝)𝑣𝑎𝑟(𝐮̂𝑝)
 (or simply cor(u_p,u_w)). This has expected value 

𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑤
 where 𝑎𝑐𝑐 

means accuracy. 

So, this estimates a ratio of accuracies and not the absolute accuracy. For instance, Values 
close to 1 indicate that “partial evaluation” was “as accurate” as “whole” evaluation, but 
both evaluations could be “little accurate”. 
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A byproduct of 𝜌̂𝑤𝑝 is an estimator of the relative increase in accuracy. In effect, 
1

𝜌̂𝑤𝑝
− 1 has 

expected value 
𝑎𝑐𝑐𝑤−𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑝
, which is the relative increase in accuracy from whole to partial . 

For instance, boars can be evaluated for carcass traits before or after some full-sibs have 

been slaughtered, and 
1

𝜌̂𝑤𝑝
− 1 gives the relative increase in accuracy. 

• The second statistic is 𝜌̂𝑤𝑝
2 =

𝑐𝑜𝑣(𝐮̂𝑝,𝐮̂𝑤)

𝑣𝑎𝑟(𝐮̂𝑤)
, with expected value 

𝑎𝑐𝑐𝑝
2

𝑎𝑐𝑐𝑤
2 , i.e. the ratio of relia-

bilities (squared accuracies). 

Note that in fact this statistic 𝜌̂𝑤𝑝
2  is the slope 𝑏1 of the regression “partial on whole”: 𝑢̂𝑝 ∼

𝑏0 + 𝑏1𝑢̂𝑤 + 𝜖. A note of caution of this statistic is that the expected value requires that the 

evaluation is unbiased (𝑏̂𝑝 = 1) something that is not required for 𝜌̂𝑤𝑝. In principle, the 

value obtained for 𝜌̂𝑤𝑝
2  should be the square of the value obtained for 𝜌̂𝑤𝑝, but this is not 

true in practice as it holds only in expectation. 

Both statistics are easy to compute: 

rho_pw=cor(EBV2018,EBV2019) # 0.9101622 
rho2_pw=cov(EBV2019,EBV2018)/var(EBV2019)# 1.15944 

note that in this example 𝜌̂𝑤𝑝
2  is not admissible (𝜌̂𝑤𝑝

2 > 1 would mean that 𝑎𝑐𝑐𝑝 > 𝑎𝑐𝑐𝑤) 

and this is because in the example 𝑏̂𝑝 is not even close to 1. 

• The first estimator of absolute reliability is an estimator of “selected” reliability: 𝑎𝑐𝑐̂𝑝
2 =

𝑐𝑜𝑣(𝐮̂𝑝,𝐮̂𝑤)

𝜎𝑢∗
2  . The denominator 𝜎𝑢∗

2  is the variance of animals in the focal group (and not 

the variance of the base generation 𝜎𝑢
2). 

When animals are pre-selected (for instance, prospective AI rams selected based on parent 

average) their genetic variance 𝜎𝑢∗
2  is less than the “normal” genetic variance 𝜎𝑢

2. As an ex-

ample, in Manech Tete Rousse, 𝜎𝑢
2 ≈ 500 but 𝜎𝑢∗

2 ≈ 350 for young selected rams (for milk 

yield) Macedo, Christensen, and Legarra (2021). The variance 𝜎𝑢∗
2  can be estimated using 

Gibbs Sampling (Sorensen, Fernando, and Gianola (2001),F. L. Macedo et al. (2020)). 

So, this equation gives the “selected” reliability (Bijma (2012),Dekkers (1992)), which is the 
“ability” to rank within those animals (more difficult when they are selected). However, we 
can’t (easily) use this reliability to predict genetic progress, and we can’t compare it with re-
sults in less selected animals, say, females. Also, the numbers do not match with those 
model-based, i.e. by Selection Index theory or from the inverse of the MME. The solution to 
this was given by Dekkers (1992) and Bijma (2012), and it leads to the last statistic: 

• Unselected reliability, 𝑟𝑒𝑙̂𝑝 = 1 −
𝜎𝑢∗
2

𝜎𝑢
2 (1 − 𝑎𝑐𝑐̂𝑝

2). The mathematical explanation of all 

this is quite boring and convoluted, but some detailed exapmles can be found in F. 
Macedo, Reverter, and Legarra (2020) and F. L. Macedo et al. (2020). 
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4.2 Examples of interpretation 

Just to give a feeling of what these numbers look like and mean. When we did the first cross-
validation approaches in dairy sheep, we used AI rams that after selection based on parent 
average, were used in progeny testing. In order to compute if genomic selection is good, we 
can evaluate these rams with ssGBLUP at birth, and then after progeny. The first result that 
we get is 𝜌̂𝑤𝑝, but it can’t be used to predict genetic progress of genomic selection. Then we 

do better and we compute 𝑎𝑐𝑐̂𝑝
2, but we obtain a number that is very small because the ani-

mals are highly selected. What we want is the accuracy of the genomic young rams if they 
were not selected, because a genomic selection scheme genotypes a wide basis of animals. 

To do so, we use the equation above to transform 𝑎𝑐𝑐̂𝑝
2 into 𝑟𝑒𝑙̂𝑝, which is the number that 

we want. 

For instance, we obtained the following Table (F. L. Macedo et al. (2020)): 

Method 𝑎𝑐𝑐̂𝑝
2 𝑟𝑒𝑙̂𝑝 𝜌̂𝑝

2𝑤 

BLUP-MF 0.22 0.53 0.32 

SSGBLUP-MF 0.32 0.59 0.45 

In the Table, the numbers of 𝑎𝑐𝑐̂𝑝
2 seems “obviously wrong” because, for instance, for BLUP 

the reliability of the Parent Average from progeny-tested sire and phenotyped mother is 
usually close to 0.5, much higher than the observed numbers of ∼ 0.25. However, the 
𝑎𝑐𝑐̂𝑝

2 = 0.22 in BLUP is the reliability within the selected rams, whereas the reliability across 

all possible rams is in fact 𝑟𝑒𝑙̂𝑝, which has a value of 0.53 much closer to what we expect. 

The value of 𝜌𝑝
2𝑤 is more complicated to interpret. However, in the three columns it is obvi-

ous that SSGBLUP is more accurate than BLUP. 

4.3 Practicalities 

1. You evaluate the bias and accuracies for a category of animals. We call this focal animals or fo-
cal groups. These are contemporary animals for which the properties above hold, which are 
“exchangeable” (in other words, we’re interested in the group, not in each individual animal) 
and in which we are interested. For instance young born rams can be a focal group. 1st-lambing 
females can be a focal group, and rams with first crop of daughters could be a focal group as 
well. But it is not a good idea to define a focal group composed of 50% progeny-tested rams 4 
year old and 50% young animals that are 1 year old, because the first will be more accurate and 
the second more shrunken towards the mean. To define the focal animals, the best way is to do 
it by analyzing the data: for instance, take all 𝑚 rams born in year say 2010, and from them se-
lect those 𝑛 that had offspring with record in 2014, but not before. Then the number of animals 
in the focal group is 𝑛. 

2. Define dates in a way such that the focal individual will have more information in the whole 
than in the partial data set. For instance, young rams could have only parents’ (and genomic) 
information in the partial data set and offspring information in the whole data set. First lambing 
females could have one record for milk yield in the partial and two records in the whole ; and 
similar cases. In the example above, the year of partial can be 2010 and the year of whole can 
be 2014. 
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3. The way we do this is using the data set and “looking forward” from each year. For instance, we 
take all rams born in 2014 that were used in AI , and few years later (say 2017) we find out 
which of these rams have daughters with milk yield. This defines a focal group for “par-
tial”=2014 and “whole”=2017 We can do the same for 2014 vs. 2018, 2019, etc. 

4. In these manner we have many “pairs” of whole and partial. For instance you can do “partial” at 
2010, 2011,… and compare each of them vs. “whole” at 2014, 2015… . It is important to do sev-
eral comparisons because the statistics vary a lot across years. Using several pairs of whole and 
partial requires automatic handling of files and data editing, that we do using automated scripts 
in R, Unix tools, and R scripting. The genetic evaluations, themselves, can be run in any software 
that you like. 

5. In practice we delete “records” (milk yield, etc etc) based on the year, and we keep ALL pedi-
gree and ALL markers. A more refined approach is to keep pedigree and markers only up to the 
same date, for instance if “partial”= March 2014 we should keep records, pedigree and markers 
up to March 2014 (because pedigree and markers were used to predict the young rams). 

6. In genetic evaluations with Unknown Parent Groups, the EBVs are not estimable functions So 
you need to refer all EBVs to a common genetic base in order to infer “bias” or not. Typically 
the genetic base is something like “average EBV of all females born in 2010” or something like 
that. 

All this requires good knowledge of the data sets, the breeding scheme (or the breed), and a 
good command of scripting and genetic 

4.4 The importance of several comparisons 

The Figure 1 below shows all the estimates of 𝑏𝑝𝑤 in F. L. Macedo et al. (2020). For instance, 

in the X-axis we see the year of cut-off of partial, and the repeated points correspond to sev-
eral whole years: 2010, 2011… It is clear that there is a large variation of 𝑏𝑝𝑤 due to chance, 

so to assess the unbiasedness of genetic evaluation one should do several pairs of whole and 
partial and not rely on a single study. For instance, year 2008 evaluation was clearly biased 
(𝑏𝑝𝑤 < 1) whereas the other years were not. 
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Different estimates of 𝑏𝑝𝑤 

4.5 Estimation of genomic accuracies vs pedigree ones 

How do I infer if a genomic evaluation is more accurate than a pedigree based one? There 
are two manners. 

The first approach is to use whole and partial as we have explained so far, and evaluate each 
run both BLUP and genomic prediction (e.g. SSGBLUP), which yields a Table like above. This 
gives quite complete information as we can compare accuracies across methods and at dif-
ferent times. 

The second approach is to consider that the genomic evaluation has “more data” so the ped-
igree-based evaluation is partial and the genomic evaluation is whole. The records 𝐲 are the 
same. in both. Then the statistics above describe the ratio, increase, or absolute accuracies. 
For instance if we observe 𝜌̂𝑝𝑤 = 1, it means that adding genotypes did not change any-

thing. However, if we obtain 𝜌̂𝑝𝑤 = 0.9, it means that accuracy increased (relatively) by 
1

𝜌̂𝑝𝑤
− 1 = 0.11. 

 

5 Contribution of Smarter to this Deliverable and publications  

During project Smarter, we verified the quality of the procedure using simulation in Macedo 
et al. (2020a), derived the estimator of “Unselected Accuracy” in Macedo et al. (2020b, 
2021) and applied the method to two breeds of dairy sheep: Manech Tete Rousse and La-
caune, with extensive testing of different models for genetic evaluation and of different 
traits (Macedo et al., 2020b; Macedo et al., submitted). 
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